
Iterators

November 15, 2020

1 Iterators and Generators

1.1 Iterators

Iterators are objects that produce successive items or values from an associated iterable. They: -
Hold the state (position) of the iteration - Allow looping just once and must be reinitialized to loop
again - Implement the __next__ method that. . . - returns the next item in the sequence - raises the
StopIteration exception if there is nothing to return - can also be invoked using the next(iterable)
function

An iterable is an object that can be iterated over. - Must be capable of returning an iterator -
Must implement the __iter__ method, callable using the iter function

Simple iterables and iterators examples Lets define an iterable and an iterator. . .

In [1]: class Iterable:
def __iter__(self):

"""
Called by iter(Iterable())
"""
return Iterator()

class Iterator:
def __init__(self):

self.x = -1

def __next__(self):
"""
Called by next(iterator)
"""
self.x += 1
return self.x

. . . and instantiate them.

In [2]: iterable = Iterable()

print(iterable)

1

<__main__.Iterable object at 0x7f474c781160>

In [3]: iterator = iter(iterable)
iter(iterable) ==> iterable.__iter__()

print(iterator)

<__main__.Iterator object at 0x7f474c7814e0>

Let’s call the next() function on the iterator.

In [4]: # iterator.__next__()
print(next(iterator))

0

An object can also define both next and iter methods.

In [5]: class SimpleIterable:
def __iter__(self):

self.x = -1
return self

def __next__(self):
self.x += 1
return self.x

def __next__(self):
if self.x <= 3:

self.x += 1
else:

raise StopIteration
return self.x

In [6]: iterable = SimpleIterable()
print(type(iterable))
iterable.x

<class '__main__.SimpleIterable'>

In [7]: iterator = iter(iterable)
type(iterator)
iterable.x

Out[7]: __main__.SimpleIterable

In [8]: # Call next 5 times
next(iterator)

Out[8]: 0

2

1.2 How to iterate on iterators

Iterators from containers (e.g. lists)

In [9]: a = list(range(4))
print(a)

[0, 1, 2, 3]

Calling next() on a list won’t work.

In [10]: next(a)

TypeError Traceback (most recent call last)

<ipython-input-10-15841f3f11d4> in <module>
----> 1 next(a)

TypeError: 'list' object is not an iterator

But getting an iterator from a list and iterating on it will.

In [11]: a = iter(a)
iter(iter) = iter

next(a)

Out[11]: 0

The foreach construct

• Built-in in the language with the for . . . in construct
• It allows looping on all elements of an iterable.
• Automatically calls the iter(. . .) function before starting looping

In [12]: print("With iter()")
iterator = iter(iterable)
for item in iterator:

print(item)

With iter()
0
1
2
3
4

3

In [13]: print("Without iter()")
for item in SimpleIterable():

print(item)

Without iter()
0
1
2
3
4

1.3 Generators

• Functions containing the keyword yield

• yield :

– works similarly to return and returns an object when called. . .
– . . . but state of the function is saved

• When next() is called again on the generator function, execution resumes where it was left
off

• Note that generators do not return values when initialized.

1.3.1 Examples

Trivial generator

In [14]: def f():
print("-- start --")
yield 3

print("-- middle --")
yield 4

print("-- finished --")

In [15]: generator = f()
generator

Out[15]: <generator object f at 0x7f47500215e8>

In [16]: next(generator)

-- start --

Out[16]: 3

4

Counter

In [17]: def counter():
x : int = 0

while True:
yield x
x += 1

generator = counter()
generator

Out[17]: <generator object counter at 0x7f4750021930>

In [18]: next(generator)

Out[18]: 0

Generators can also be defined inline!

In [19]: generator = (x for x in range(10))
print("generator type:", type(generator))

list(generator)

generator type: <class 'generator'>

Out[19]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Mind the difference with list comprehensions!

In [20]: not_a_generator = [x for x in range(10)]
print("not_a_generator type:", type(not_a_generator))

not_a_generator type: <class 'list'>

1.3.2 Generators are lazy iterators

• They are used to generate values dynamically

– Very useful to cope, for instance, with Out of Memory issues

• As iterators, they don’t implement the __len__ method

– i.e., len() function will cause an exception

• Generators support bidirectional communication.

– You can pass values to the generator after its initialization

• Concurrent and recursive invocations are allowed. . .

– . . . even though they are not thread safe out of the box.

5

1.3.3 Dynamic value generation example

In [21]: from datetime import datetime
print("MS output format:", datetime.now().microsecond)

def very_unsafe_prng(max_value):
while True:

yield datetime.now().microsecond % max_value

generator = very_unsafe_prng(10)
generator

MS output format: 445995

Out[21]: <generator object very_unsafe_prng at 0x7f4750021750>

In [22]: # No len!
len(generator)

TypeError Traceback (most recent call last)

<ipython-input-22-95dd6a62a607> in <module>
1 # No len!

----> 2 len(generator)

TypeError: object of type 'generator' has no len()

In [23]: next(generator)

Out[23]: 1

1.3.4 Bidirectional communication

Bidirectional communication allows to send values to the generator. Relies on three methods: -
.send(. . .): sends the value to the generator and, like next(), returns the next value - .throw(. . .):
throws the passed exception after resuming the generator that will handle it - .close(): stops the
generator. Equivalent to .throw(GeneratorExit()) - yield can be used in expressions to assign values
to generator’s variables - Values will be assigned when the generator resumes from yield

Example

In [24]: from random import choice

Define allowed values ([1, 7])

6

values = list(range(1, 8))

Define a generator
def seven_and_half():

values_sum = 0
results = []

player = 1

Keep going until generator is closed
while True:

Pick a card (pseudo) randomly
value = choice(values)

Accumulate the values
values_sum += value

#
try:

response = yield value, values_sum
except GeneratorExit:

results.append((player, values_sum),)

for player, score in results:
print("Player {} scored {}".format(player, score))

break

if response is False or response is None:
results.append((player, values_sum),)
values_sum = 0
player += 1

print("Exiting")

In [25]: # Init the generator
generator = seven_and_half()

In [26]: keep_playing = None

Keep in mind that
generator.send(None) === next(generator)

while True:
if keep_playing is False:

break

print("Picking a card.")
value, values_sum = generator.send(keep_playing)

7

print("Picked {}. Total: {}".format(value, values_sum))

if values_sum > 7:
print("You lost!")
keep_playing = False

else:
keep_playing : bool = (input("Keep picking? ") in ["y", "Y", True])

print(output)

Picking a card.
Picked 5. Total: 5
Keep picking? n

In [27]: generator.close()

Player 1 scored 5
Exiting

1.4 Exercise

Intro CSV (Comma-Separated Values) files are text files where each row is a data record and
columns are separated by commas (or some other character).

The first row is (usually) the header (i.e., the name of the corresponding column).
A CSV file looks like:

id,name,surname
0,Mickey,Mouse

Request You have to process a CSV file. Lets assume it is too large to fit in RAM.
You should process it in small pieces, e.g., by reading each line sequentially using a generator.
Specifically, after reading the header, for each line of the file create a dictionary with the

column-value associations.

A few tips

• Pathlib module offers classes representing filesystem paths with semantics appropriate for
different operating systems

• Use the _zip(*iterables)_ builtin function. From the docs:

– Builds an iterator that aggregates elements from each of the iterables
– That is, it returns an iterator of tuples, i.e., The i-th element of the tuple contains the i-th

element from each of the argument sequences or iterables.
– The iterator stops when the shortest input iterable is exhausted

• Use the with statement. From the docs: the with statement is used to wrap the execution of a
block with methods defined by a context manager. This allows common try. . . except. . . finally
usage patterns to be encapsulated for convenient reuse.

• As an example CSV, download as raw the Rolling Stone Magazine’s list of “The 500 Greatest
Albums of All Time.” from GitHub.

8

https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/reference/compound_stmts.html#with
https://raw.githubusercontent.com/Currie32/500-Greatest-Albums/master/albumlist.csv
https://github.com/Currie32/500-Greatest-Albums/blob/master/albumlist.csv
https://github.com/Currie32/500-Greatest-Albums/blob/master/albumlist.csv

1.4.1 Solution

In [28]: from pathlib2 import Path

def dataset_reader(file):
Lets use pathlib instead of using the open() function,
with open(file, "r+") as f:

Creating a Path instance.
file = Path(file)

Not actually needed, just showing some functionality
if not file.absolute():

file = file.resolve()

print("Opening", file.name, "in folder", file.parent)

if not file.exists():
raise FileNotFoundError("File doesn't exist!")

with file.open("r+", encoding="ISO-8859-15") as f:
header = f.readline()
columns = header.strip().split(',')

print("Found columns:", columns)
for line in f:

values = line.strip().split(',')
print(values)

try:
yield dict(zip(columns, values))

except GeneratorExit:
print("Closing the generator!")
break

In [29]: file = "albumlist.csv"

generator = dataset_reader(file)

In [30]: next(generator)

Opening albumlist.csv in folder .
Found columns: ['Number', 'Year', 'Album', 'Artist', 'Genre', 'Subgenre']

Out[30]: {'Number': '1',
'Year': '1967',

9

