Concurrency
November 10, 2020

1 Concurrency and Parallelism

1.1 Concurrency
The main limitation to Python’s concurrent execution is the Global Interpreter Lock (GIL).
The GIL is a mutex that allows only one thread to run at a given time (per interpreter).

It is meant to patch CPython ’s memory management, which is, in fact, a non-thread-safe reference
counting.

While I0-bound threads are not affected by this limitation, CPU-bound threads are.

Python 3.8 should have brought some mitigations to this problem, but in practice nothing changes
for the user.

python’s standard libraries include:

e threading: thread-based concurrency

o multiprocessing: process-based parallelism

o concurrent.futures: asynchronous execution via threads or processes [not covered in this
lecture]

There are also external libraries that allow parallelism (e.g., pathos)

1.2 Parallelism

Parallelism in python is mainly used at data level. In fact, being the data independent, no synchro-
nization is usually required.

This means that you can achieve full parallelism and take advantage of all of the cores in modern
machines, squeezing all of their power.

After the processing, results can be handled by the parallel process or collected in the main process
and handled.

So, how do we achieve parallelism in python ?
There are a couple of ways, and the right solution depends on your problem. For instance, you can:

e Spawn new processes, each with their own interpreter. This introduces non-negligible time
and memory overhead

o Offload to external code. From a python perspective, this transforms a CPU-bound task to
an IO-bound one. For example, numpy and other libraries implement most algorithms in
C/C++/Fortran

[16]:

[2]:

1.2.1 multiprocessing package
Native parallelism is provided by the multiprocessing package.

The main building block of the package is the Process class, which instances represent the activity
that is being run in a separate process. If you're familiar with Java, it is quite similar to fairly to
the Java™’s equivalent.

Process init parameters include:

e target function to execute plus its args and kwargs
e daemon: whether the process is a daemon. They are killed when parent is closed

While the class methods include:

o run(): the default invokes the target with its parameters. Can be overridden
o start(): creates process and starts invokes the run method from there

o join(): joins the process, with an optional timeout

o close(): closes the Process instance and deallocates its resources

Example: Process init
from multiprocessing import Process

def f(name):
print('hello', name)

Process wants a TUPLE as args!
p = Process(target=f, args=('bob',))
print ("INITED", p)

p.start()

print ("STARTED", p)
p-join()

print ("JOINED", p)
p.close()

print ("CLOSED", p)

INITED <Process(Process-19, initial)>
hello bob

STARTED <Process(Process-19, started)>
JOINED <Process(Process-19, stopped)>
CLOSED <Process(Process-19, closed)>

multiprocessing vs multiprocessing.dummy The subpackage multiprocessing.dummy im-
plements the same interface as the main package but is thread-based (i.e., logical concurrency but
no parallelism, often used during testing).

As an example, let’s start a Process from the two packages.

import multiprocessing
import multiprocessing.dummy as multithreading

p = multiprocessing.Process()
multithreading.Process()

ct
]

print(p)
print(t)

<Process(Process-2, initial)>
<DummyProcess(Thread-4, initial)>

As you can see, they offer the same interface but the result is different.

1.3 Ways to start a process
Processes can be started in three ways:

o fork: forks the current python interpreter. It is available on Unix systems only, where it is
the default method

e forkserver: a server process is created and will create new processes on behalf of the parent.
It is available on some Unix platforms;

e spawn: a fresh python interpreter process is created. It inherits only the necessary resources
to run the Process instance’s run() method. This option can be faster or slower compared to
the others as you need to reload some or all of the packages from disk. It is available on Unix
and Windows, where it is the default option

The preferred method can be chosen using the set_start _method(spawn_method) function available
in the multiprocessing package.

1.4 Synchronization

Synchronization between processes (or threads!) is, again, similar to Java. For instance, the
multiprocessing package includes:

e Locks
— Lock: non-recursive lock. Subsequent acquisition attempts will block until the lock is
released; any process or thread may release it
— RLock: recursive lock. The same process or thread may acquire it again and must
release it the same number of times
e Semaphores
— Semaphore: atomic counter representing the number of release() calls minus the num-
ber of acquire() calls, plus an initial value. Can be acquired if the value is > 0
— BoundedSemaphore: like a Semaphore, but the counter cannot exceed its initial value

1.4.1 Examples
Locks What follows is a toy-example of acquiring a lock.

[17]: def f(lock):
We import here the resources to support all the spawn methods
from time import sleep
import multiprocessing

[18]:

[5]:

We try to acquire the lock

try:
lock.acquire()
print('{} says hello!'.format(multiprocessing.current_process()))
and sleep 3s after acquiring <t.
sleep(3)
except Exception as e:
print(e)
finally:

lock.release()
from multiprocessing import Lock, Process

Get the lock instance
lock = Lock()

Spawn two processes with sharing the lock
Process(target=f, args=(lock,)).start()
Process(target=f, args=(lock,)).start()

<Process(Process-20, started)> says hello!
<Process(Process-21, started)> says hello!
Semaphores Semaphores offer the same interface but different behaviour.

from multiprocessing import BoundedSemaphore, Process

Init a semaphore with counter 2
semaphore = BoundedSemaphore(2)

for i in range(4):
Process(target=f, args=(semaphore,)).start()

<Process(Process-5, started)> says hello!
<Process(Process-6, started)> says hello!
<Process(Process-7, started)> says hello!
<Process(Process-8, started)> says hello!

1.5 Sharing objects

Python also supports sharing objects between processes (and threads).

[6]:

[7]1:

1.5.1 Pipes

The most basic way is sharing using Pipe objects, although this solution is not very pythonic and
more user friendly ways exist.

Pipes objects allow sending objects from one end to the other.
They may be duplex (send and receive from both sides) or not.

Note that they can get corrupted if two or more processes/threads read from or write to from the
same side.

from multiprocessing import Pipe, Process

from time import sleep

def send_something(conn):
display("Hello!")

sleep(1)

conn.send([42, None, 'hello'])
conn.close()

Monoplex Pipe. The first end can only receive, the other can only send
conn_receive, conn_send = Pipe(duplex=True)

Init process
p = Process(target=send_something, args=(conn_send,))

print("Starting the process")
p.start()

print("Waiting for a message")
Wait to receive something
print ("Received:", conn_receive.recv())

Starting the process
Waiting for a message
Received: [42, None, 'hello']

1.5.2 Queues

For instance, the multiprocessing package also includes various queue implementations. They all
allow to define the max queue size (0 <= means infinite) and support different in-out policies.

The most used implementations are: - Queue: FIFO queue - LifoQueue: LIFO queue - Priori-
tyQueue: priority queue

from multiprocessing import Queue, Process

def producer(queue) :

from time import sleep

for i in range(10):
queue.put (i)

sleep(1)

queue . put (None)

def consumer (queue) :
while True:
item = queue.get()

if item is None:
break

print(item)
[8]: from multiprocessing.dummy import Process as Thread

queue = Queue()
p = Process(target=producer, args=(queue,))
p-start Q)

t = Thread(target=consumer, args=(queue,))
t.start ()

t.j0in()
p.join()
0
What if we use two daemons instead?
[9]: p = Process(target=producer, args=(queue,), daemon=True)

p.start()

t = Process(target=consumer, args=(queue,), daemon=True)
t.start(Q

t.50in()
p.j0in()

w N = O

© 00 N O Ok

Computation will not complete unless we join them!

1.6 Sharing state
Python supports sharing state between processes and threads.

Keep in mind that it is usually best to avoid using shared state as far as possible. - This is
particularly true when using multiple processes

There are a couple of ways of sharing state: - Sharing memory - Managers

1.6.1 Shared memory
Starting from Python 3.8, you can also share any object using the shared__memory module.

It allows to share a location of memory between processes (threads already share memory, of course)
and allocate base objects there.

Very briefly, you can allocate C'Types object in a shared memory:

e Value represents a single value
e Array represents an array

Check the docs for more!

[10]: from multiprocessing import Process, Value, Array, RLock

def shared_memory_consumer (shared_value, array):
with shared_value.get_lock():
shared_value.value = 10

with array.get_lock():
for i in range(len(array)):
array[i] = len(array) - i

Init value as double (float), protected by a lock
shared_value = Value("d", 0.0, lock=True)

Init array of integers, protected by a REENTRANT LOCK
array = Array('i', range(10), lock=RLock())

p = Process(target=shared_memory_consumer, args=(shared_value, array))
p-start
p-join()

[11]:

print (shared_value.value)
print([array[i] for i in range(len(array))])

10.0

(10, 9, 8, 7, 6, 5, 4, 3, 2, 1]

1.6.2 Managers

Managers provide a way to create data which can be shared between different processes.

They control a server process holding the objects and allows other processes to manipulate them
using proxies.

including sharing over a network between processes running on different machines.

For instance, the SyncManager, returned by Manager(), supports lists, dictionaries, locks,
semaphores, queues, shared memory objects and others.

from multiprocessing import Manager
manager = Manager ()

lock = manager.Lock()
semaphore = manager .BoundedSemaphore ()

queue = manager.Queue()

value = manager.Value("d", 0.0, lock=True)

1.7 Pools

The most common, but also simple and pythonic, way to perform multiprocessing in python is
through pools of processes.

Pools create a number of workers which will carry out tasks submitted to the pool.

A Pool object controls a pool of workers, and supports both synchronous and asynchronous results.

1.7.1 Pool parameters
The main parameters of the Pool class include:

e processes: number of worker processes to use. If None, the number of CPUs is used

o initializer: if not None, cach worker will call initializer(initargs)* when it starts

o maxtasksperchild: number of tasks a worker can complete before it will exit and be replaced
with a fresh worker process, to enable unused resources to be freed. Default is None, which
means worker processes will live as the pool itself

Example: Pool initialization Let’s init a Pool.

[12]:

[19]:

from multiprocessing import Pool

def square(x):
return XxX*Xx

def square_wait(x):
from time import sleep

sleep(2)
return x*x

pool = Pool(processes=4)

pool = Pool()
print (multiprocessing.cpu_count())

8

1.7.2 Pool methods

Pool objects offer both synchronous and asynchronous methods.

Synchronous methods The synchronous methods are: - apply(func/, args[, kwds]]): calls
func with given arguments - map (func, iterable[, chunksize]): chops the iterable parameter
into chunks of (approximate) size chunksize and submits them to the pool as separate tasks -
imap (func, iterable[, chunksize]): map lazier variant. Suitable for very long iterables using a
large chunksize value improves performances - imap__unordered(func, iterable[, chunksize]):
same as above, but results’ order is arbitrary - starmap (func, iterable[, chunksize]): like map
but the elements of the iterable are expected to be iterables that are unpacked as arguments

Getting results synchronously After initing the Pool, let’s submit a job and get the result
synchronously.

result = pool.apply(square, (2,))

print("This result will show immediately. Result:", result)
result = pool.apply(square_wait, (2,))

print("This result will take some time. Result:",result)

This result will show immediately. Result: 4
This result will take some time. Result: 4

Asynchronous method The synchronous methods also have an asynchronous variant:

o apply__async(func/, args[, kwds/, callback[, error__callback]]]])
o map__async(func, iterable[, chunksize[, callback[, error__callback]]])
o starmap__async(func, iterable[, chunksize[, callback[, error__callback]]])

While the synchronous result methods block until the result is ready, the asynchronous ones return
an AsyncResult object and also provide timeouts and callbacks.

[14]:

[15]:

The AsyncResult provides blocking get() and wait() methods to get the result, and ready() and
successful() methods to check the result status. The single argument callbacks can handle the
result or the exception, but must return immediately as they are executed by the main thread and
block the result processing otherwise.

Getting results asynchronously Now let’s try to get the results asynchronously.

Get the result asynchronously
result = pool.apply_async(square_wait, (5,))

print("Here's your (future) result", result)

print ("WAIT FOR IT")

result.wait()

print ("RESULT IS READY!")

print(result.get())

print("Status successful? {}".format(result.successful()))

Here's your (future) result <multiprocessing.pool.ApplyResult object at
0x7£79ca75def0>

WAIT FOR IT

3

4

RESULT IS READY!
25

Status successful? True

result = pool.apply_async(square_wait, (10,))

print("Timeout 1s, but function takes more time!")
print(result.get (timeout=1))

Timeout 1s, but function takes more time!

TimeoutError Traceback (most recent call last)
<ipython-input-15-8b3ab813e71f> in

2

3 print("Timeout 1s, but function takes more time!")
---=> 4 print(result.get(timeout=1))

~/anaconda3/envs/pytorch/lib/python3.7/multiprocessing/pool.py in (self,
~timeout)

651 self .wait (timeout)

652 if not self.ready():
--> 653 raise TimeoutError

654 if self._success:

655 return self._value

10

TimeoutError:

Map iterators to workers Let’s try to map an iterator to many workers.

[20]: | # Define a processor
def square_random_wait(x):
from random import randint
from time import sleep

sleep_time = randint(0, 2)
print ("Sleeping for", sleep_time, "seconds")

sleep(sleep_time)

return x*Xx

from multiprocessing import Pool

Init our pool
pool = Pool()

Define input values
values = range(4)

[21]: print("These results will appear immediately")
print (pool.map(square, values))

These results will appear immediately
[o) 1’ 4, 9]

[22] : |print ("These results will appear all at once")
print(pool.map(square_random_wait, values))

These results will appear all at once
[0, 1, 4, 9]

[23]: print("These results will appear one at a time *IN THE SAME ORDER AS THE INPUTx*!

;}Il)

for result in pool.imap(square_random_wait, values):
print (result)

These results will appear one at a time *IN THE SAME ORDER AS THE INPUTx*!

0
1

11

[24]:

[27]:

4
9

values = range(10)

print("These results will appear one at a time *AS SOON AS THEY ARE READY*!")
for result in pool.imap_unordered(square_random_wait, values):
print (result)

These results will appear one at a time *AS SOON AS THEY ARE READYx*!
0
16
25
4
49
1
81
9
36
64

1.7.3 Pool handling

Pools provide a few methods to handle them: - close(): prevents any more tasks from being
submitted. Once all the tasks have been completed the worker processes will exit - terminate():
forces the workers to exit - join(): waits for the worker processes to exit. Must be called after
close() or terminate()

The simplest way to handle a pool of workers is through the with statement (Context Manager
protocol). - It automatically closes the pool once the with block is done. Behaves like a try ... finally
- Generic purpose, not limited to pools

from multiprocessing import Pool, current_process
from time import sleep

def random wait(x):
from random import randint

sleep(randint (0, 2))

print ("{} DONE!".format (current_process()))

values = range(10)

with Pool(processes=4) as pool:
pool .map_async(random_wait, values)

print ("These tasks will not complete")

12

[28]:

These tasks will not complete

with Pool(processes=4) as pool:
pool .map_async(random_wait, values)

pool.close()
pool.join()

print ("But these will!")
print (results.get())

<ForkProcess (ForkPoolWorker-44, started daemon)> DONE!
<ForkProcess(ForkPoolWorker-44, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-43, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-42, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-45, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-44, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-45, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-44, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-43, started daemon)> DONE!
<ForkProcess (ForkPoolWorker-42, started daemon)> DONE!
But these will!

1.8 Guidelines

Here are a few guidelines from the python’s official documentation that aim to improve your code
and avoid bugs.

« Avoid shared state. Stick to queues or pipes rather than using the lower level synchroniza-
tion primitives

o Prefer inheritance than pickle/unpickle

— .. and also be sure that your arguments are picklable (serializable)

e Lock proxies if multithreading. They are NOT thread safe!

« Explicitly pass resources to child processes for compatibility with the spawn method,
which is default on Windows, instead using of global resources

¢ Do not terminate processes abruptly if they use shared resources

e Join processes that use queues carefully. They wait before terminating until all the
buffered items are fed to the underlying pipe and joining them will cause deadlocks

1.9 Exercise

Follow up of the previous section [Iterables and generators|({{< ref “iterables” >}}).

Now we want to process the records in the CSV file. Assume that you want to perform some very
time consuming operation on them and employ a Pool of processes to perform these operations.

Note that map will unroll the generator and fit all the records into memory, which contrasts with
our requirements. For a moment, forget about it and use map__async.

As a second step, reintroduce the RAM constraint and use queues and apply__async. A few tips for

13

this second step: - Use Queues - This is just a producer/consumer example

from pathlib2 import Path

def dataset_reader(file):
Lets use pathlib instead of using the open() function,
with open(file, "r+") as f:

Creating a Path instance.
file = Path(file)

Not needed, just showing Pathlib off a bit
if not file.absolute():
file = file.resolve()

with file.open("r+", encoding="IS0-8859-15") as f:
header = f.readline()
columns = header.strip().split(',"')

print (columns)
for line in f:
values = line.strip().split(',")
print (values)

try:
yield dict(zip(columns, values))
except GeneratorExit:
print("Closing the generator!")
break

file = "albumlist.csv"
from tqdm import tqdm
from subprocess import check_output
from multiprocessing import Pool, current_process
Redirect STDOUT to T(DM
def print(x):
tqdm.write(str(x))

processes_num = 4

file = "albumlist.csv"
generator = dataset_reader(file)

14

[]1:

[]1:

[1:

records_number = None
cmd = "wc --lines {}".format(Path(file) .resolve())

try:
records_number check_output (cmd, shell=True, text=True)
records_number = int(records_number.strip().split() [0])
except Exception as e:
exit ("ERROR! {}".format(e))

print("{} -> {}".format(cmd, records_number))

Let's define a very very complex record-processing function:

def f(x):
return x["Number"]

1.9.1 Part 1: no memory constraints

with Pool(processes=processes_num) as pool:
pool.map_async(lambda x: x["Number"], tgdm(generator,
—~total=records_number), callback=callback)

pool.map_async(f, tqdm(list(generator), total=records_number),
—callback=print)

pool.close()

pool.join()

1.9.2 Part 2: bring memory constraints back

def producer(queue, generator):
for record in generator:
#print (record)
queue.put (record)

queue. put (None)

print ("PRODUCER DONE!")
return

def consumer (queue, function):
output = []
while True:
#print ("get!")
item = queue.get()

15

[1:

if item is None:
print ("CONSUMER DONE!")
break

output.append (function(item))
#print (item)

print (output)
return output

from multiprocessing import Manager, Queue
from multiprocessing.dummy import Process as Thread

manager = Manager ()
queue = manager .Queue(maxsize=processes_num)

generator = dataset_reader(file)

with Pool(processes=processes_num) as pool,\
tqdm(total=records_number) as progressbar:

#Thread (target=producer, args=(queue, generator)).start()

def callback(x):
progressbar.update(len(x))

print (z)

for _ in range(processes_num):
pool.apply_async(func=consumer,
args=(queue, f),
callback=callback,
error_callback=print

)

for record in generator:
print (record)
queue.put (record)

for _ in range(processes_num):
queue . put (None)

pool.close()
pool.join()

16

© 0 N O

1.10 References

e Python Docs: concurrency

e Python Docs: multiprocessing
e Brendan Fortuner at Medium
o Chriskiehl

17

https://docs.python.org/3.7/library/concurrency.html
https://docs.python.org/3.7/library/multiprocessing.html
https://medium.com/@bfortuner/python-multithreading-vs-multiprocessing-73072ce5600b
https://chriskiehl.com/article/parallelism-in-one-line

	Concurrency and Parallelism
	Concurrency
	Parallelism
	multiprocessing package

	Ways to start a process
	Synchronization
	Examples

	Sharing objects
	Pipes
	Queues

	Sharing state
	Shared memory
	Managers

	Pools
	Pool parameters
	Pool methods
	Pool handling

	Guidelines
	Exercise
	Part 1: no memory constraints
	Part 2: bring memory constraints back

	References

